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Abstract

When an agent votes, she typically ranks the set of available
alternatives. Occasionally, she may also wish to report the
intensity of her preferences by indicating adjacent pairs of
alternatives in her ranking between which her preference is
acutely decisive; for instance, she may suggest that she likes
alternative a more than b, but b much more than c. We de-
sign near-optimal voting rules which aggregate such prefer-
ence rankings with intensities using the recently-popular dis-
tortion framework. We also show that traditional voting rules,
which aggregate preference rankings while ignoring (or not
eliciting) intensities, can incur significant welfare loss.

Introduction
Professor X wants to take her students out for a group lunch.
Being a computational social choice researcher, she realizes
that this is the perfect opportunity to conduct real-life voting,
so she offers them the choice between four popular restau-
rants (a, b, c, and d) and asks the ambiguously worded —
though, perhaps intentionally so — question: “Tell me your
preferences over these restaurants”. One of her students,
Sam, responds with the preference ranking a ą b ą c ą d,
which means he likes a the most and d the least. Meera has
a slightly different preference ranking, b ą d ą c ą a.
Additionally, she also wants to convey that she likes b and
d much more than a or c (she is vegetarian and the latter
two lack good vegetarian options). Thus, she responds with
a preference ranking with intensities, b ą d ąą c ą a; the
‘ąą’ between d and c indicates that her preference intensity
drops sharply from d to c.1

Professor X was planning to use the Borda count, a well-
established voting rule for aggregating preference rankings
that would give each restaurant 3, 2, 1, and 0 points each
time it is ranked first, second, third, and fourth, respectively,
and pick the restaurant with the most points as the winner.
But now, she begins to wonder how she should aggregate
preference rankings with intensities indicated by ‘ąą’ signs.
A natural approach would be to modify Borda count so that
there is a steeper drop in points awarded when encountering
a ‘ąą’ sign. But exactly how steep should it be? In Meera’s
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1We use “intensity” and “decisiveness” interchangeably.

case (b ą d ąą c ą a), perhaps the four restaurants should
be awarded 3, 2.5, 0.5, and 0 points in order. Or should it
be 3, 2.1, 0.9, and 0 points? Professor X is not satisfied with
this, and for a more systematic approach, she looks towards
the distortion framework.

Introduced by Procaccia and Rosenschein (2006), the dis-
tortion framework posits that ordinal preferences reported
by the agents stem from their underlying numerical utility
functions over the set A of m alternatives. That is, when
agent i reports that she prefers alternative a to b (denoted
a ą b), it must be the case that uipaq ě uipbq according to
her underlying utility function ui : A Ñ Rě0. The goal of
the distortion framework is to seek voting rules which, sub-
ject to the available partial information about agents’ utility
functions, minimize the worst-case approximation ratio be-
tween the highest possible utilitarian social welfare (sum of
agent utilities) and that of the outcome picked by the rule;
this quantity is termed distortion. For aggregating prefer-
ence rankings (without intensities), the best possible distor-
tion for deterministic and randomized voting rules is known
to be Θpm2q (Caragiannis and Procaccia 2011; Caragiannis
et al. 2017) and Θp

?
mq (Boutilier et al. 2015; Ebadian et al.

2022), respectively.
The distortion framework is extremely versatile. It can be

used not only to analyze how to aggregate ranked prefer-
ences, but also to analyze how to aggregate other ballot for-
mats such as top-t preferences (Borodin et al. 2022), thresh-
old approval votes (Benade et al. 2021), and ranked pref-
erences coupled with additional queries (Amanatidis et al.
2021; Brams and Sanver 2009); compare different ballot for-
mats (Benade et al. 2021); and even design optimal ballot
formats (Mandal et al. 2019; Mandal, Shah, and Woodruff
2020).

We argue that this framework also provides a systematic
approach to aggregating preference rankings with intensi-
ties. Let α P r0, 1s be a parameter that governs how decisive
an agent must be for her to use a ‘ąą’ sign. When agent i
reports a ą b, we still assume that uipaq ě uipbq. But when
agent i reports aąąb, we assume that the agent has an α-
decisive preference for a over b given by α ¨ uipaq ě uipbq.
Thus, when α “ 0, ‘ąą’ signs provide significant additional
information since the agent’s utility must drop to 0 starting
with the alternative after the first ‘ąą’ sign (if it exists). In
contrast, when α « 1, ‘ąą’ signs provide little additional in-



formation and are essentially equivalent to ‘ą’ signs.
Given a value of α, the distortion framework allows us

to identify an alternative (or a distribution over alternatives)
with the the minimum distortion, when agents (voluntarily)
use ‘ąą’ signs to reveal α-decisive preferences. Alternatively,
the designer may choose a value of α and mandate all agents
to use ‘ąą’ signs whenever they have α-decisive preferences;
in this case, agent i reporting a ą b would translate to a
stronger condition of uipaq ě uipbq ą α ¨ uipaq because
we know the agent’s preference for a over b is decidedly
not decisive (no pun intended). In both these cases of vol-
untary and mandatory intensity revelation, one can not only
study optimal voting rules, but also the social welfare loss
that traditional voting rules can incur by either not eliciting
or ignoring the intensity information. This leads to our main
research questions:

How should one aggregate preference rankings with
intensities? Can a better distortion be guaranteed
if all agents have decisive preferences or if the de-
signer mandates revealing decisive preferences when-
ever they exist? What welfare loss might the designer
incur when using a traditional voting rule that simply
aggregates preference rankings without intensities?

Our Contribution

A key conceptual contribution of our work is to introduce a
formal model in which agents can report α-decisive prefer-
ences using the ‘ąą’ sign and the impact of this on the distor-
tion of voting rules can be analyzed.

We begin our analysis with the top decisiveness setting,
in which every agent is assumed to be α-decisive between
their top two choices. For this setting, which has been con-
sidered in the literature under a different model, we identify
asymptotically optimal distortion bounds for both determin-
istic and randomized voting rules. We also extend this to
uniform decisiveness, in which every agent is assumed to be
α-decisive between every pair of adjacent alternatives in her
preference ranking, and provide tight distortion bounds for
deterministic rules.

In general when agents can have α-decisive preferences at
arbitrary locations in their preference rankings, we introduce
and study the price of ignoring the intensities (POII), which
captures the efficiency loss of traditional voting rules that do
not elicit preference intensities. When agents can voluntar-
ily report their α-decisive preferences (but are not required
to do so), we show that both deterministic and randomized
rules can suffer from a significant POII. When agents must
mandatorily report their α-decisive preferences, the POII
can be even higher, and we prove a better lower bound for
deterministic rules.

In case of mandatory reporting, by proving non-trivial
lower bounds, we raise the interesting open question of
whether one can establish better distortion bounds for de-
terministic rules by carefully choosing the value of α, but
show that this cannot be done for randomized rules.

Related Work

Our work builds on the distortion framework, specifically
the utilitarian distortion framework in which agents have
normalized utilities for alternatives (Procaccia and Rosen-
schein 2006). There is a closely related framework of met-
ric distortion (Anshelevich et al. 2018; Anshelevich and
Postl 2017; Abramowitz, Anshelevich, and Zhu 2019), in
which agents and alternatives are embedded in an underly-
ing metric space, agents have costs for the alternatives mea-
sured by the distance between them, and agents rank the
alternatives by these costs. While constant distortion of 3
can already be guaranteed in this framework by aggregat-
ing ranked preferences using a deterministic rule (Gkatzelis,
Halpern, and Shah 2020; Kizilkaya and Kempe 2022), An-
shelevich and Postl (2017) introduced the idea of deriv-
ing improved distortion bounds when the underlying metric
space is α-decisive, that is, when each agent’s distance to
her closest alternative is at most α times her distance to her
next-closest alternative. This has induced a significant body
of follow-up work (Gross, Anshelevich, and Xia 2017; Gh-
odsi, Latifian, and Seddighin 2019; Gkatzelis, Halpern, and
Shah 2020; Anagnostides, Fotakis, and Patsilinakos 2022).
The top-decisiveness setting from our paper is precisely the
counterpart of this in the utilitarian distortion framework,
where each agent’s utility for her second-best alternative is
assumed to be at most α times her utility for her best alter-
native. Our uniform decisiveness setting takes this one step
further, where the agent is decisive between every adjacent
pair of alternatives in her preference ranking, not only be-
tween her top two alternatives.

For our setting in which agents voluntarily reveal their de-
cisiveness, improved distortion bounds cannot be guaranteed
because in the worst case, none of the agents may reveal any
decisiveness. For this setting, we study the price of ignor-
ing the intensities, which is the maximum factor by which
the distortion can increase due to not taking into account
the voluntarily revealed decisiveness information; here, the
worst case is when agents do reveal substantial useful in-
formation. This is similar to the concept of competitive ratio
from online algorithms (Borodin and El-Yaniv 2005), except
the ignorance in our case is rectifiable.

Our setting in which the designer chooses a value of α and
forces agents to reveal whenever they have α-decisive pref-
erences is equivalent to querying agents for additional in-
formation beyond their ranked preferences, which has been
studied by Amanatidis et al. (2021). Specifically, our setting
is a special case of their framework, in which m ´ 1 com-
parison queries are made to each agent, one for every adja-
cent pair of alternatives in her preference ranking. While we
show a lower bound of Ωpmq for our setting (and leave open
the exciting question of whether this is tight), they show that
constant distortion can be achieved by using Oplog2 mq ar-
bitrary comparison queries per agent. Mandal et al. (2019)
and Mandal, Shah, and Woodruff (2020) extend this idea to
allow arbitrary queries and search over the space of all possi-
ble ballot formats to find ones that provide the optimal trade-
off between distortion and the number of bits of information
elicited from each agent. We refer the interested reader to



the survey by Anshelevich et al. (2021) for further related
work on distortion.

Preliminaries
For t P N, define rts “ t1, 2, . . . , tu, and for a set X , define
∆pXq to be the set of all distributions over X . Let N “ rns

be a set of n agents, and A “ ta1, a2, . . . , amu be a set of
m alternatives.

Preference rankings with intensities. Each agent i has
ordinal preferences over the alternatives given by a prefer-
ence ranking with intensities, denoted σi “ pπi,’iq, where
πi : rms Ñ A is a one-to-one function that determines a
ranking over the alternatives, and ’i: rm´1s Ñ t‘ą ’, ‘ąą’u
is a function that determines the intensities: ’i pjq “ ‘ ą ’
indicates a preference for πipjq over πipj ` 1q, whereas
’i pjq “ ‘ąą’ indicates a strong preference for πipjq over
πipj ` 1q. Let σ⃗ “ pσ1, . . . , σnq denote the ordinal prefer-
ence profile, and SpAq be the set of all total orderings with
intensities over A.

Voting rule. A (randomized) voting rule f : SpAqn Ñ

∆pAq maps an ordinal preference profile to a distribution
over the alternatives. We say that f is deterministic if it al-
ways outputs a distribution with singleton support; in this
case, we use fpσ⃗q to directly denote the single alternative in
the support of the distribution chosen by f on σ⃗.

Utilitarian framework. We assume that the ordinal pref-
erences of the agents stem from underlying cardinal pref-
erences. Specifically, each agent i has an underlying util-
ity function ui : A Ñ Rě0, where uipaq denotes the
utility of agent i for alternative a. For a distribution x P

∆pAq, we write uipxq “ Ea„x uipaq. Following the liter-
ature (Aziz 2020), we work with unit-sum utilities, where
ř

aPA uipaq “ 1 for each i P N .
Let u⃗ “ pu1, . . . , unq be the utility profile. Let α P r0, 1s

be a parameter which may be chosen either by the designer
or implicitly by the agents. We say that utility profile u⃗ is α-
consistent with preference profile σ⃗, denoted u⃗▷α σ⃗, if, for
all i P N and j P rm´1s, we have uipπipjqq ě uipπipj`1qq

if ’i pjq “ ‘ ą ’ and α ¨ uipπipjqq ě uipπipj ` 1qq if
’i pjq “ ‘ąą’.

Given a utility profile u⃗, the social welfare of distribution
x P ∆pAq is swpx, u⃗q “

ř

iPN uipxq. The distortion of x
over u⃗ is defined as

distpx, u⃗q “
maxaPA swpa, u⃗q

swpx, u⃗q
,

and the α-distortion of x on a preference profile σ⃗ is defined
as distαpx, σ⃗q “ supu⃗▷ασ⃗ distpx, u⃗q.Throughout the paper
we might use candidate a when a distribution x P ∆pAq is
expected. In this case by a we mean a distribution that gives
probability 1 to a and zero to the rest of the candidates.

Intuitively, distortion quantifies the efficiency of a distri-
bution x for a preference profile σ⃗ by taking the worst-case
ratio between the social welfare of the optimal alternative
and the (expected) social welfare of x over all utility profiles
that are α-consistent with the preference profile, which, in
this case, includes preferences intensities.

We also define the α-distortion of a voting rule f as

distαpfq “ max
σ⃗PSpAqn

distαpfpσ⃗q, σ⃗q,

or as the worst case α-distortion of the output of f over all
preference profiles.

Top Decisiveness
Without assuming that agents have at least somewhat de-
cisive preferences, one cannot hope to improve distortion
bounds (Opm2q for deterministic rules and Op

?
mq for ran-

domized rules (Ebadian et al. 2022)) because, in the worst
case, none of the agents may use the ‘ąą’ sign. Hence, in
the related literature on metric distortion, a number of pa-
pers have analyzed distortion bounds subject to a natural
restriction on agent preferences: all agents are assumed to
be α-decisive in their preference for their best alternative
over their second-best alternative, for a fixed α (Anshelevich
and Postl 2017; Gross, Anshelevich, and Xia 2017; Ghodsi,
Latifian, and Seddighin 2019; Gkatzelis, Halpern, and Shah
2020; Anagnostides, Fotakis, and Patsilinakos 2022).

We study such preferences in the utilitarian framework,
and rename them as top α-decisive to indicate that the deci-
siveness is at the top of the preference ranking. While iden-
tifying asymptotically optimal distortion bounds for top α-
decisive preferences is still an open question in the metric
distortion framework (Gkatzelis, Halpern, and Shah 2020),
we are able to obtain tight distortion bounds for this in the
utilitarian framework.

Definition 1 (Top α-Decisiveness). Let α P r0, 1s. We say
that agent i with utility function ui is top α-decisive if there
exists an alternative a˚ such that uipaq ď α ¨ uipa

˚q for
all a ‰ a˚. To restate this, define ’top to be a function
where ’topp1q “ ‘ąą’ and ’toppjq “ ‘ ą ’ for 1 ă j ă

m, and SdpAq Ă SpAq to be the set of preference rankings
with intensities containing σ “ pπ,’topq for all preference
rankings π. Then, agent i is top α-decisive if there exists
σi P SdpAq such that ui ▷α σi. A preference profile σ⃗ is
top α-decisive if σ⃗ P SdpAqn, and a utility profile u⃗ is top
α-decisive if u⃗▷α σ⃗ for some σ⃗ P SdpAqn.

Definition 2 (Top α-decisive distortion of rule f ). The dis-
tortion of a voting rule f with respect to top α-decisive pref-
erences is defined as

disttopα pfq “ max
σ⃗PSdpAqn

distα pfpσ⃗q, σ⃗q .

First, we show matching lower (Theorem 1) and upper
(Theorem 2) bounds on the best possible distortion of de-
terministic rules with respect to top α-decisive preferences.
The proof of the next result and all other missing proofs are
presented in the appendix.

Theorem 1. For any α P r0, 1s, the distortion of every deter-
ministic voting rule with respect to top α-decisive utilitarian
spaces is Ωpα2m2 ` 1q.

Next, we show that the simple plurality rule provides a
matching upper bound for all α, despite ignoring preference



intensities and being oblivious to the value of α. This is per-
haps not so surprising: plurality is known to provide asymp-
totically the best distortion for aggregating (not necessar-
ily decisive) ranked preferences (Caragiannis and Procaccia
2011; Caragiannis et al. 2017), and assuming top decisive-
ness only increases the importance of focusing on the top
choices of the agents, which plurality does.
Theorem 2. For any α P r0, 1s, the distortion of plurality
with respect to top α-decisive preferences is O

`

α2m2 ` 1
˘

.

Proof. Let fplu denote the plurality rule. Consider a top α-
decisive preference profile σ⃗ and a utility profile u⃗ such
that u⃗ ▷α σ⃗. Let ap be the plurality winner and a˚ P

argmaxaPA swpa, u⃗q be an optimal alternative. Let Nap

and
Na˚

denote the sets of agents who have ap and a˚ as their
top choices in σ⃗, respectively.

Then, due to the utility functions being unit-sum and top
α-decisive, we have

swpap, u⃗q ě |Nap

| ¨
1

αpm ´ 1q ` 1
,

swpa˚, u⃗q ď |Na˚

| ¨ 1 ` pn ´ |Na˚

|q ¨
α

α ` 1
.

Using the fact that |Nap

| ě maxp|Na˚

|, n{mq, we have

distpfplupσ⃗q, u⃗q “
swpa˚, u⃗q

swpap, u⃗q

ď αpm ´ 1q ` 1 `
αpm ´ 1q

α ` 1
¨ pαpm ´ 1q ` 1q

“ Opm2α2 ` 1q.

Note that the best distortion bound of deterministic rules
drops from Θpm2q at α “ 1 (which is the traditional setting)
to Θp1q at α “ Θp1{mq, and then stays Θp1q.

As is often the case with distortion-based analysis, ran-
domized rules offer significantly better guarantees. We next
present matching lower (Theorem 3) and upper (Theorem 4)
bounds for the distortion of randomized voting rules with re-
spect to top α-decisive preferences, with some minor results
along the way.
Theorem 3. The distortion of every randomized voting
rule with respect to top α-decisive utilitarian spaces is
Ωp αm`1

α
?
m`1

q.

Given our results for deterministic rules, one may
wonder whether randomized rules that are known to be
(near-)optimal for aggregating ranked preferences (α “ 1)
may also happen to be (near-)optimal for aggregating top α-
decisive preferences for all α P r0, 1s, despite being obliv-
ious to preference intensities and the value of α. For ag-
gregating ranked preferences, the harmonic rule (Boutilier
et al. 2015) provides Op

?
m logmq distortion while the sta-

ble lottery rule (Ebadian et al. 2022) provides the optimal
Op

?
mq distortion. While these distortion upper bounds triv-

ially hold for aggregating top α-decisive preferences, unfor-
tunately the distortion of these rules does not seem to im-
prove when α ă 1.

Fortunately, we are able to modify the stable lottery
rule to design a new randomized voting rule, which pays

increased attention to agents’ top choices and provably
achieves asymptotically optimal distortion with respect to
top α-decisive preferences, while still being oblivious to
preference intensities as well as the value of α.
Definition 3. We define fdec to be a randomized voting rule
that, with probability 1

2 , runs the stable lottery rule (fslr);
with probability 1

4 , selects an alternative uniformly at ran-
dom from the set of alternatives which are the top choice of
at least one agent; and with the remaining probability 1

4 , se-
lects an alternative with the maximum plurality score (i.e.,
is the top-choice of the most agents).

Theorem 4. For every α P r0, 1s, the distortion of the (ran-
domized) rule fdec with respect to top α-decisive preferences
is Op αm`1

α
?
m`1

q.

Proof. Consider any top α-decisive preference profile σ⃗ “

pπ⃗, ’⃗q, and let u⃗ ▷α σ⃗ be the underlying utility profile. Let
a˚ P argmaxaPA swpa, u⃗q be an optimal alternative. Define
Na to be the set of agents who have alternative a as their top
choice, N´a “ NzNa, and T to be the set of the alterna-
tives that are the top choice of at least one agent. For each
i P N´a˚

we have uipπip1qq ě
uipa˚

q

α , so we have
ÿ

aPT
swpa, u⃗q ě

ÿ

iPN

uipπip1qq ě
ÿ

iPN´a˚

uipπip1qq

ě
ÿ

iPN´a˚

uipa
˚q

α
. (1)

The plurality winner ap must be the top choice of at
least |Na˚

| agents, each of whom must have utility at least
1

αpm´1q`1 ě 1
αm`1 due to having a unit-sum and top α-

decisive utility function. Thus, we have

swpap, u⃗q ě
|Na˚

|

αm ` 1
. (2)

Putting Equations (1) and (2) together with the fact that
the distortion of fslr is at most 2

?
m (Ebadian et al. 2022),

we have:
Erswpfdecpσ⃗q, u⃗qs

ě
1

4

¨

˝

ÿ

iPN´a˚

uipa
˚q

αm
`

|Na˚

|

αm ` 1
`

swpa˚, u⃗q
?
m

˛

‚

ě
1

4

¨

˝

ÿ

iPN´a˚

uipa
˚q

αm ` 1
`

|Na˚

|

αm ` 1
`

swpa˚, u⃗q
?
m

˛

‚

ě
1

4

ˆ

swpa˚, u⃗q

αm ` 1
`

swpa˚, u⃗q
?
m

˙

ě
swpa˚, u⃗q

4
¨
αm `

?
m ` 1

αm
?
m `

?
m

ě swpa˚, u⃗q ¨
α

?
m ` 1

4pαm ` 1q
,

and hence,

distpfdecpσ⃗q, u⃗q “
swpa˚, u⃗q

Erswpfdecpσ⃗q, u⃗qs

ď
4pαm ` 1q

α
?
m ` 1

“ O

ˆ

αm ` 1

α
?
m ` 1

˙

.



Note that the distortion stays Θp
?
mq from α “ 1 to α “

Θp1{
?
mq, then drops to Θp1q by α “ Θp1{mq, and then

stays Θp1q as α drops further.

Uniform Decisiveness
In some applications, it may be natural for agents to be α-
decisive not only between their top two choices, but be-
tween every pair of adjacent alternatives in their ranking.
We initiate the study of this natural restriction on agent
preferences. We say that agent i is uniform α-decisive if
’i“ pąą, . . . ,ąąq in her ordinal preferences σi “ pπi,’iq.
We then define uniform α-decisive preference profiles and
utility profiles, as well as the distortion of a voting rule with
respect to uniform α-decisive preferences similarly to the
case of top α-decisiveness.

While any distortion upper bounds with respect to top α-
decisive preferences continue to hold with respect to uni-
form α-decisive preferences, one may hope to find improved
distortion bounds now that the agents are more decisive. In-
deed, we are able to provide improved matching lower (The-
orem 5) and upper (Theorem 6) bounds for deterministic
rules. For randomized rules, we present a lower bound (The-
orem 7), but leave open the question of whether an upper
bound better than the one in Theorem 4 can be derived.
Theorem 5. For every α P r0, 1s, the distortion of every
deterministic voting rule with respect to uniform α-decisive
preferences is Ω

´

pmα`1qp1´αm
q

1´α

¯

.

Theorem 6. For every α P r0, 1s, the distortion of the (de-
terministic) plurality rule with respect to uniform α-decisive
preferences is O

´

pmα`1qp1´αm
q

1´α

¯

.

Theorem 7. For every α P r0, 1s, the distortion of every
randomized voting rule with respect to uniform α-decisive
preferences is Ω

´

min
´?

m, 1´αm

1´α

¯¯

.

Voluntary Reporting of Intensities
We now relax the assumption that all agents have similarly
decisive preferences. Instead, we study a setting in which
agents may have decisive preferences at arbitrary positions
in their preference rankings, and even when they do, they
may choose to not reveal them and use the ‘ą ’ sign instead
of the ‘ąą’ sign. As argued before, one cannot hope to derive
improved distortion bounds in this case because it is pos-
sible that none of the agents use ‘ąą’ sign anywhere in the
preference profile.2

Instead, we focus on the loss of efficiency that a tradi-
tional voting rule can incur in the worst case, measured by
increased α-distortion, due to aggregating only preference
rankings and not preference rankings with intensities. This
is meaningful as the worst case now occurs when the agents

2One can still seek to computationally find the distortion-
optimal distribution on any given (not necessarily worst-case) pref-
erence profile. It is easy to see that this requires only a slight
modification in the linear program Boutilier et al. (2015), where
uipaq ě uipbq is replaced by α ¨ uipaq ě uipbq whenever agent i
reports aąąb (in adjacent positions in her preference ranking).

could have revealed α-decisive preferences by using the ‘ąą’
sign, but the traditional voting rule either did not elicit such
intensities or chose to ignore them. We initiate the study of
this efficiency loss, which we term the price of ignoring the
intensities.
Definition 4 (Intensity-aware optimal). Let optawα pσ⃗q be a
distribution x over A that minimizes the worst-case distor-
tion over the utility profiles that are α-consistent with σ⃗, i.e.,

optawα pσ⃗q “ argmin
xP∆pAq

distαpx, σ⃗q.

Definition 5 (Price of ignoring the intensities (POII)). We
define the price of ignoring the intensities (POII) of a dis-
tribution x P ∆pAq on a preference profile σ⃗ as the ratio
between the α-distortion of x and that of the intensity-aware
optimal distribution:

PoIIpx, σ⃗, αq “
distαpx, σ⃗q

distαpoptawα pσ⃗q, σ⃗q
.

When x is chosen based only on the ranked preference
profile (without intensities) π⃗, its POII on π⃗ is defined as
PoIIpx, π⃗, αq “ maxσ⃗▷π⃗ PoIIpx, σ⃗, αq,where we use σ⃗ ▷ π⃗
to denote that σ⃗ “ pπ⃗, ’⃗q for some ’⃗. This allows us to
define both the intensity-oblivious optimal distribution on π⃗
as optobα pπ⃗q “ argminxP∆pAq PoIIpx, π⃗, αq and the POII on
π⃗ as PoIIpπ⃗, αq “ PoIIpoptobα pπ⃗q, π⃗, αq. We are interested
in the worst case of this over all π⃗, termed the POII for α-
decisive preferences: PoIIpαq “ maxπ⃗ PoIIpπ⃗, αq.

We observe the following lemma, which provides a way
to derive a lower bound on the price of ignorance.
Lemma 1. For any ranked preference profile (without in-
tensities) π⃗, preference profile σ⃗ ▷ π⃗, and distribution x P

∆pAq, we have:

PoIIpπ⃗, αq ě
distαpoptobα pπ⃗q, σ⃗q

distαpx, σ⃗q
.

Proof. By the definitions,

PoIIpπ⃗, αq ě PoIIpoptobα pπ⃗q, σ⃗, αq “
distαpoptobα pπ⃗q, σ⃗q

distαpoptawα pσ⃗q, σ⃗q

ě
distαpoptobα pπ⃗q, σ⃗q

distαpx, σ⃗q
.

Theorem 8. For any α P r0, 1s, the price of ignoring
the intensities for α-decisive preferences is PoIIpαq “

Ω
´ ?

mp1´αq

1´αm ` 1
¯

.

Proof. For ease of exposition, assume
?
m divides n. Parti-

tion the agents into
?
m equal-sized subsets N1, . . . , N?

m,
and consider ranked preference profile (without intensities)
π⃗, where members of Nj rank aj first and the rest of the
alternatives in a cyclic order.3

3All we need is that for j ą 1, each alternative appears in the
j-th position in the preference rankings of at most n{m agents.



Fix an intensity-oblivious optimal distribution optobα pπ⃗q.
Without loss of generality, assume that optobα pπ⃗q places the
lowest probability on a1 among the alternatives a1, . . . , a?

m

(thus, this probability is at most 1{
?
m).

Now, define intensities in a way that for i P N1, we have
’i“ pąą, . . . ,ąąq, whereas for all other agents i1 R N1,
we have ’i1 “ pą, . . . ,ąq. Consider the preference profile
σ⃗ “ pπ⃗, ’⃗q. We show that optobα pπ⃗q has a significant POII
on σ⃗. We use Lemma 1 to derive this in two steps: proving
a lower bound on distαpoptobα pπ⃗q, σ⃗q and proving an upper
bound on distαpx, σ⃗q for some distribution x P ∆pAq.

Step 1. For proving a lower bound on distαpoptobα pπ⃗q, σ⃗q,
consider the utility profile u⃗˚ in which all members of N1

have utility 1 for a1 and zero for all other alternatives, and
all other agents have utility 1{m for every alternative. Since
u⃗˚ ▷α σ⃗, we can see that

distαpoptobα pπ⃗q, σ⃗q ě distαpoptobα pπ⃗q, u⃗˚q ě

?
m

2
. (3)

We omit the detailed calculation as it is identical to the one
given in Boutilier et al. (2015) for proving a distortion lower
bound on randomized voting rules for aggregating ranked
preferences (without intensities).4

Step 2. On the other hand, consider the distribution x
that places probability 1 on a1. To prove an upper bound
on distαpx, σ⃗q “ distαpa1, σ⃗q, consider any utility profile
u⃗ such that u⃗ ▷α σ⃗. For each i P N1, we can see that
uipa1q ě 1´α

1´αm due to unit-sum and uniform α-decisive
utility function ui. Hence,

swpa1, u⃗q ě
n

?
m

¨
1 ´ α

1 ´ αm
. (4)

Also, every other alternative a appears as the top choice of
at most n{

?
m agents (who each have utility at most 1 for

it), and for 1 ă j ď m, it appears in the j-th position in the
preference rankings of at most n{m of the agents (who each
have utility at most 1{j for it due to their utility functions
being unit-sum). Hence, we have

swpa, u⃗q ď
n

?
m

¨ 1 `
n

m
¨ Hm ď

2n
?
m
, (5)

where Hm “
řm

i“1 1{i is the m-th harmonic number. From
Equations (4) and (5), we have that

distαpa1, σ⃗q ď
2p1 ´ αmq

1 ´ α
.

Using Lemma 1 and Equation (3), we have

PoIIpαq ě PoIIpπ⃗, αq ě
distαpoptobα pπ⃗q, σ⃗q

distαpa1, σ⃗q

ě
p1 ´ αq

?
m

4p1 ´ αmq
“ Ω

ˆ

p1 ´ αq
?
m

1 ´ αm
` 1

˙

.

The last step follows because the POII is always at least 1.

4While they derive a lower bound of
?
m{3, it is not difficult to

see that a careful calculation in their analysis yields
?
m{2.

You can see that when α is a constant less than 1,
PoIIpαq “ Θp

?
mq. Note that we can not hope for a higher

POII since the stable lottery rule (Ebadian et al. 2022) al-
ready guarantees Op

?
mq distortion while being intensity

oblivious. That means we have a rule that could not suffer
from a multiplicative increase in distortion by an ωp

?
mq

factor compared to the intensity-aware optimal distribution
in hindsight. That said, for other regimes of α, it remains to
be seen whether the bound from Theorem 8 is tight.

The POII can similarly be defined when restricting to
deterministic choices. Here, we prove the following lower
bound, which is not necessarily tight even when α is a con-
stant less than 1, resulting in another open question.
Theorem 9. For any α P r0, 1s, the price of ignoring the
intensities of deterministic rules for α-decisive preferences
is Ω

´

mp1´αq

1´αm ` 1
¯

.

Mandatory Reporting of Intensities
To this point, we have studied the setting where agents may
choose to report decisive preferences. Crucially, they are
not required to report all (or indeed any) α-decisive pref-
erences. One natural question is whether a designer can do
significantly better by choosing a value of α and requiring
all agents to report all locations in their preference ranking
where their preference between adjacent alternatives is α-
decisive. In this case, when agent i reports a ą b for adja-
cent alternatives a and b in her preference ranking, we know
not only that uipaq ě uipbq (agent i prefers a to b), but also
that α ¨ uipaq ď uipbq (the preference is not α-decisive).

We say that utility function u is strictly α-consistent with
preference ordering σ “ pπ,’q, and denote it with u▷`

α σ,
if u is α-consistent with σ, and for each j P rm ´ 1s where
’ pjq “ ‘ą ’, we have α ¨ upπpjqq ď upπpj ` 1qq. A utility
profile u⃗ is strictly α-consistent with a preference profile σ⃗
if ui ▷`

α σi for each agent i.
In this section, we assume that agents’ utility functions

are strictly α-consistent with the preference ordering they
submit to the voting rule. Our goal is to see if we can get
improved distortion bounds in this case.
Definition 6 (Strict Distortion). The strict α-distortion of
distribution x P ∆pAq on preference profile σ⃗ is defined as:

distSαpx, σ⃗q “ sup
u⃗ ▷`

α σ⃗

distpx, u⃗q.

We prove a lower bound on the best possible strict distor-
tion of any deterministic rule as a function of α. Our bound
is Ωpm2q at α “ Θp1q and α “ Op1{mq, showing that
mandatory reporting of intensities cannot help reduce dis-
tortion in these regimes. However, our bound is the weakest
(Ωpm5{4q) at α “ Θp1{ 4

?
mq, raising the interesting possi-

bility of significantly improving upon the Opm2q distortion
by choosing the right value of α and mandating agents to
report α-decisive preferences.
Theorem 10. For any α P r0, 1s, the strict α-distortion of
every deterministic voting rule f satisfies:

distSαpfq “ Ω

ˆ

max

ˆ

m2α3,
m2

mα ` 1

˙˙

.
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Figure 1: A conceptual plot of the bounds in Theorem 10.

The bound achieves its weakest value of Ωpm
5
4 q at m “

Θp1{ 4
?
mq (see Figure 1).

Proof sketch. We give two bounds that complement each
other as shown in Figure 1.

For the first bound (the blue line in Figure 1) consider a
profile in which agents all have the same alternative as their
second choice but are split evenly among favorite alterna-
tives. All agents are decisive only between the first and sec-
ond, and second and third positions, i.e., ’i“ pąą,ąą,ą

, . . . ,ąq.
For the second bound (the red line in Figure 1), consider

a profile in which agents are divided into groups. All the
agents have am as their second choice, each group of agents
ranks a particular subset of alternatives first, and the rest in
an arbitrary order. For any deterministic voting rule f , we
can case on whether f chooses am or not.

While it may be possible to improve the distortion of de-
terministic rules via mandatory reporting of intensities, we
prove that this is decidedly not the case for randomized
rules: regardless of the value of α P r0, 1s, every random-
ized rule has strict distortion Ωp

?
mq, meaning that the sta-

ble lottery rule of Ebadian et al. (2022) achieves the optimal
strict distortion of Op

?
mq for all α P r0, 1s. The result is

proved by deriving two separate lower bounds, which estab-
lish the desired implication in complementary regions of α,
as depicted in Figure 2.

Theorem 11. For every α P r0, 1s, every (randomized) vot-
ing rule f has strict α-distortion distSαpfq “ Ωp

?
mq.

Proof sketch. We consider the classic lower bound instance
from Boutilier et al. (2015), where

?
m of the alternatives

appear as the top choices of n{
?
m agents each. We bound

the strict distortion of this instance with respect to two dif-
ferent intensity profiles: in the first profile, each agent i re-
ports ’i“ pą, . . . ,ąq, and in the second profile, each agent
i reports ’i“ pąą,ą, . . . ,ąq.

POII with Mandatory Reporting of Intensities
One can define the price of ignoring the intensities in this
case like in the case of voluntary reporting of intensities.
However, in the case of mandatory reporting of intensities,
an intensity-oblivious rule has potentially more to lose: had

0 0.5 1
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Figure 2: A conceptual plot of the bounds in Theorem 11.

it elicited intensities, it could have obtained additional in-
formation not only when a voter used the ‘ąą’ sign (which
indicates the preference is decisive), but also when the voter
used the ‘ ą ’ sign (which indicates the preference is not
decisive).

We are in fact able to improve upon our lower bound from
Theorem 9. While that lower bound started at Ωpmq at α “ 0
and decreased to the trivial bound of Ωp1q as α Ñ 1, our
new bound starts at Ωpmq at α “ 0, but increases to Ωpm2q

as α Ñ 1. Note that Ωpm2q is the highest possible POII
because plurality achieves Opm2q distortion in an intensity-
oblivious manner, so it cannot suffer from a multiplicative
increase in distortion by an ωpm2q factor due to the lack of
intensity elicitation.

Theorem 12. For every α P r0, 1s, the price of ignoring the
intensities of deterministic rules with mandatory reporting
of α-decisive preferences is Ωp

mp1´αm
q

1´α q.

Discussion

Our work uncovers several exciting open questions. Perhaps
the most compelling of them is whether one can improve
the distortion of deterministic rules to Opmq by choosing
a value of α P r0, 1s and mandating all agents to reveal
whenever their preferences are α-decisive. A compelling
candidate is α “ Θp1{

?
mq because this is where our

lower bound from Theorem 10 achieves its weakest value
of Ωpmq. Other open questions include settling the opti-
mal distortion of randomized rules subject to uniform de-
cisiveness (see Theorem 7 for our lower bound), the POII
when agents reveal their α-decisive preferences voluntarily
(see Theorems 8 and 9 for our lower bounds), and the POII
when agents reveal their α-decisive preferences mandatorily
(see Theorem 12).

In the related literature on metric distortion, top decisive-
ness (i.e., decisiveness between the best and second-best
alternatives) has been explored extensively, but assuming
other forms of decisiveness (such as uniform decisiveness)
and eliciting decisive preferences deserves further explo-
ration. Exploring the impact of decisive agent preferences
on other important desiderata such as fairness (e.g., propor-
tional fairness (Ebadian et al. 2022)) and strategyproofness
is also an exciting direction for the future.



References
Abramowitz, B.; Anshelevich, E.; and Zhu, W. 2019. Aware-
ness of voter passion greatly improves the distortion of met-
ric social choice. In International Conference on Web and
Internet Economics, 3–16. Springer.
Amanatidis, G.; Birmpas, G.; Filos-Ratsikas, A.; and
Voudouris, A. A. 2021. Peeking behind the ordinal curtain:
Improving distortion via cardinal queries. Artificial Intelli-
gence, 296: 103488.
Anagnostides, I.; Fotakis, D.; and Patsilinakos, P. 2022.
Metric-distortion bounds under limited information. Jour-
nal of Artificial Intelligence Research, 74: 1449–1483.
Anshelevich, E.; Bhardwaj, O.; Elkind, E.; Postl, J.; and
Skowron, P. 2018. Approximating optimal social choice un-
der metric preferences. Artificial Intelligence, 264: 27–51.
Anshelevich, E.; Filos-Ratsikas, A.; Shah, N.; and
Voudouris, A. A. 2021. Distortion in Social Choice Prob-
lems: The First 15 Years and Beyond. In Proceedings of
the 30th International Joint Conference on Artificial Intelli-
gence (IJCAI), 4294–4301. Survey Track.
Anshelevich, E.; and Postl, J. 2017. Randomized social
choice functions under metric preferences. Journal of Ar-
tificial Intelligence Research, 58: 797–827.
Aziz, H. 2020. Justifications of welfare guarantees under
normalized utilities. ACM SIGecom Exchanges, 17(2): 71–
75.
Benade, G.; Nath, S.; Procaccia, A. D.; and Shah, N. 2021.
Preference elicitation for participatory budgeting. Manage-
ment Science, 67(5): 2813–2827.
Borodin, A.; and El-Yaniv, R. 2005. Online computation
and competitive analysis. Cambridge University Press.
Borodin, A.; Halpern, D.; Latifian, M.; and Shah, N. 2022.
Distortion in voting with top-t preferences. In Proceedings
of the 31st International Joint Conference on Artificial Intel-
ligence (IJCAI), 116–122.
Boutilier, C.; Caragiannis, I.; Haber, S.; Lu, T.; Procaccia,
A. D.; and Sheffet, O. 2015. Optimal social choice func-
tions: A utilitarian view. Artificial Intelligence, 227: 190–
213.
Brams, S. J.; and Sanver, M. R. 2009. Voting systems that
combine approval and preference. In The mathematics of
preference, choice and order, 215–237. Springer.
Caragiannis, I.; Nath, S.; Procaccia, A. D.; and Shah, N.
2017. Subset selection via implicit utilitarian voting. Jour-
nal of Artificial Intelligence Research, 58: 123–152.
Caragiannis, I.; and Procaccia, A. D. 2011. Voting almost
maximizes social welfare despite limited communication.
Artificial Intelligence, 175(9-10): 1655–1671.
Ebadian, S.; Kahng, A.; Peters, D.; and Shah, N. 2022. Op-
timized Distortion and Proportional Fairness in Voting. In
Proceedings of the 23rd ACM Conference on Economics and
Computation (EC), 563–600.
Ghodsi, M.; Latifian, M.; and Seddighin, M. 2019. On the
distortion value of the elections with abstention. In Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI), volume 33, 1981–1988.

Gkatzelis, V.; Halpern, D.; and Shah, N. 2020. Resolving
the optimal metric distortion conjecture. In Proceedings of
the 61st Symposium on Foundations of Computer Science
(FOCS), 1427–1438.
Gross, S.; Anshelevich, E.; and Xia, L. 2017. Vote until two
of you agree: Mechanisms with small distortion and sample
complexity. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI), 544—-550.
Kizilkaya, F. E.; and Kempe, D. 2022. Plurality Veto: A
Simple Voting Rule Achieving Optimal Metric Distortion.
In Proceedings of the 31st International Joint Conference
on Artificial Intelligence (IJCAI), 349–355.
Mandal, D.; Procaccia, A. D.; Shah, N.; and Woodruff, D. P.
2019. Efficient and thrifty voting by any means necessary.
In Proceedings of the 33rd Annual Conference on Neural
Information Processing Systems (NeurIPS), 7180–7191.
Mandal, D.; Shah, N.; and Woodruff, D. P. 2020. Optimal
communication-distortion tradeoff in voting. In Proceedings
of the 21st ACM Conference on Economics and Computa-
tion (EC), 795–813.
Procaccia, A. D.; and Rosenschein, J. S. 2006. The distor-
tion of cardinal preferences in voting. In Proceedings of
the 10th International Workshop on Cooperative Informa-
tion Agents (CIA), 317–331.



Appendix
A Missing Proofs

In this section, we provide the missing proofs. For each proof, the theorem is restated for the convenience of the reader.

Proof of Theorem 1
Theorem 1. For any α P r0, 1s, the distortion of every deterministic voting rule with respect to top α-decisive utilitarian spaces
is Ωpα2m2 ` 1q.

Proof. Partition the agents into m´ 1 equal-sized subsets N1, N2, . . . , Nm´1, and consider a top α-decisive preference profile
σ⃗, in which members of Ni rank ai first, am second, and other alternatives arbitrarily. Consider a deterministic voting rule f .
We consider two cases.

First, suppose fpσ⃗q “ am. Consider the utility profile u⃗ in which uipajq “ 1 whenever agent i belongs to Nj , and uipajq “ 0
otherwise; in other words, each agent has utility 1 for his top choice and 0 for the remaining alternatives. Then, we have:

distαpfpσ⃗q, σ⃗q ě
swpa1, u⃗q

swpam, u⃗q
“ 8.

Next, assume fpσ⃗q “ at ‰ am. Consider the utility profile u⃗ where

uipajq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1
αm`1´α i P Nt and j “ t,

α
αm`1´α i P Nt and j ‰ t,
1

α`1 i R Nt and i P Nj ,
α

α`1 i R Nt and j “ m,

0 otherwise.

That is, agents in Nt have utility 1{pαm` 1´αq for their top choice at, and α{pαm` 1´αq for every other alternative; every
other agent has utility 1{pα ` 1q for her top choice, α{pα ` 1q for am, and 0 for every other alternative. We can see that

swpat, u⃗q “
n

m ´ 1
¨

1

αm ` 1 ´ α
,

swpam, u⃗q ě n ¨

ˆ

1 ´
1

m ´ 1

˙

¨
α

α ` 1
.

Hence, we have:

distαpfpσ⃗q, σ⃗q ě
maxaPA swpa, u⃗q

swpat, u⃗q

ě
max pswpam, u⃗q, swpat, u⃗qq

swpat, u⃗q

ě max

ˆ

αpm ´ 2qpαm ` 1 ´ αq

1 ` α
, 1

˙

“ Ωpα2m2 ` 1q.

Proof of Theorem 3
Theorem 3. The distortion of every randomized voting rule with respect to top α-decisive utilitarian spaces is Ωp αm`1

α
?
m`1

q.

Proof. For the ease of exposition, assume that
?
m divides n. Partition the agents into

?
m equal-sized subsets

N1, N2, . . . , N?
m, and consider a preference profile σ⃗ where members of Nj rank aj first and the rest of the alternatives

arbitrarily. Let f be a randomized voting rule, and at be the alternative with the minimum probability in fpσ⃗q among alterna-
tives a1, . . . , a?

m (thus, fpσ⃗q places at most 1{
?
m probability on at). Now, consider the utility profile u⃗ where

uipajq “

$

’

’

’

&

’

’

’

%

1 i P Nt and j “ t,

0 i P Nt and j ‰ t,
1

αm`1´α i R Nt and i P Nj ,
α

αm`1´α i R Nt and i R Nj .

That is, agents in Nt have utility 1 for at and 0 for every other alternative, while every other agent has utility 1{pαm ` 1 ´ αq

for her top choice and α{pαm ` 1 ´ αq for every other alternative.



In this scenario, we have:
swpat, u⃗q ě

n
?
m

¨ 1,

and, for j ‰ t, we have:

swpaj , u⃗q “

ˆ

n
?
m

` n ¨

ˆ

1 ´
2

?
m

˙

¨ α

˙

¨
1

αm ` 1 ´ α
ď

ˆ

n
?
m

` nα

˙

¨
1

αm ` 1 ´ α
,

which implies
swpaj , u⃗q

swpat, u⃗q
ď

α
?
m ` 1

αm ` 1 ´ α
ď

α
?
m ` 1

αm ` 1
.

Hence, we have:

distαpfpσ⃗q, σ⃗q ě
1

1?
m

`
α

?
m`1

αm`1

ě
αm ` 1

2pα
?
m ` 1q

“ Ω

ˆ

αm ` 1

α
?
m ` 1

˙

.

Proof of Theorem 5
Theorem 5. For every α P r0, 1s, the distortion of every deterministic voting rule with respect to uniform α-decisive preferences
is Ω

´

pmα`1qp1´αm
q

1´α

¯

.

Proof. Assume that m´1 divides n, and consider preference profile σ⃗ in which for i P rm´1s, n
m´1 agents rank ai as their top

choice. Furthermore, all agents rank am as their second choice and the other alternatives arbitrarily. Let f be any deterministic
voting rule. We consider two cases.

First, suppose fpσ⃗q “ am. Consider the utility profile u⃗ in which each agent has utility 1 for her top choice and zero for the
remaining alternatives. Then, swpam, u⃗q “ 0 while swpa1, u⃗q ą 0, yielding unbounded distortion.

Next, suppose fpσ⃗q “ at ‰ am. Consider the utility profile u⃗ in which agents that have at as their top choice have utility
αi´1

p1´αq

1´αm for their i-th preferred alternative for each i P rms; and every other agent has utility 1
1`α for her top choice, α

1`α for
her second choice (am), and zero for the remaining alternatives.

Note that u⃗ is α-consistent with σ⃗. Without loss of generality, assume that at ‰ a1. Then, we have

swpam, u⃗q ě
nα

2p1 ` αq
ě

nα

4
,

swpa1, u⃗q ě
n

p1 ` αqpm ´ 1q
ě

n

4pm ´ 1q
,

swpat, u⃗q “
p1 ´ αqn

p1 ´ αmqpm ´ 1q
.

Hence, we have

distαpat, σ⃗q ě
maxpswpam, u⃗q, swpa1, u⃗qq

swpat, u⃗q

ě
swpam, u⃗q ` swpa1, u⃗q

2 ¨ swpat, u⃗q

ě
pαpm ´ 1q ` 1qp1 ´ αmq

8p1 ´ αq

“ Ω

ˆ

pmα ` 1qp1 ´ αmq

1 ´ α

˙

.

Proof of Theorem 6
Theorem 6. For every α P r0, 1s, the distortion of the (deterministic) plurality rule with respect to uniform α-decisive prefer-
ences is O

´

pmα`1qp1´αm
q

1´α

¯

.

Proof. Consider any preference profile σ⃗. For any alternative a, let Na denote the subset of agents who rank a first. Let a˚ be
an alternative with the highest social welfare and ap be the plurality winner. For any utility profile u⃗▷α σ⃗, we have:

swpa˚, u⃗q ď |Na˚

| `
αn

1 ` α
ď |Nap

| `
αn

1 ` α
,



and
swpap, u⃗q ě |Nap

| ¨
1 ´ α

1 ´ αm
.

We can conclude that

distαpap, σ⃗q “
swpa˚, u⃗q

swpap, u⃗q

ď
p1 ` α ` αn

|Nap
|
qp1 ´ αmq

1 ´ α2

ď
p1 ` α ` mαqp1 ´ αmq

1 ´ α

“ O

ˆ

pmα ` 1qp1 ´ αmq

1 ´ α

˙

.

Proof of Theorem 7
Theorem 7. For every α P r0, 1s, the distortion of every randomized voting rule with respect to uniform α-decisive preferences
is Ω

´

min
´?

m, 1´αm

1´α

¯¯

.

Proof. We use the same setting as the proof of Theorem 1. Assume that
?
m divides n. Partition the agents into

?
m equal-

sized subsets N1, N2, . . . , N?
m, and consider a preference profile σ⃗ where members of Nj rank aj first and the rest of the

alternatives arbitrarily. Let f be any randomized voting rule, and at be the alternative with the minimum probability in fpσ⃗q

among alternatives a1, . . . , a?
m.

Now, consider the utility profile u⃗ where members of Nt have utility 1 for at and zero for the other alternatives. Furthermore,
every other agent has utility αj´1 1´α

1´αm for her j-th most preferred alternative, for each j P rms.
In this scenario, we have:

swpat, u⃗q ě
n

?
m

and, for each j ‰ t

swpaj , u⃗q ď
n ¨ 2p1 ´ αq

?
mp1 ´ αmq

,

implying
swpaj , u⃗q

swpat, u⃗q
ď

2p1 ´ αq

1 ´ αm
.

Hence, we have:

distαpfpσ⃗q, σ⃗q ě
1

1?
m

`
2p1´αq

1´αm

“ Ω

ˆ

min

ˆ

?
m,

1 ´ αm

1 ´ α

˙˙

.

Proof of Theorem 9
Theorem 9. For any α P r0, 1s, the price of ignoring the intensities of deterministic rules for α-decisive preferences is
Ω

´

mp1´αq

1´αm ` 1
¯

.

Proof. Assume that n “ m!. We consider the ordering profile π⃗ where each agent has a different permutation of the alternatives
as their ranking. This means that, for all positions j P rms, each alternative ai appears in the jth position for n

m of the agents.
Because the instance is symmetric, w.l.o.g. assume that the intensity oblivious optimal alternative is a1. Now, let all agents i that
have am as their top choice have intensities ’i“ pąą,ąą, . . . ,ąąq, and all other agents j have intensities ’j“ pą,ą, . . . ,ąq.
Let σ⃗ “ pπ⃗, ’⃗q.

Now, partition the agents into three sets. Let N1 be the set of the agents that have a1 as their top choice, N2 be the set of
agents that prefer a1 to am but do not have a1 as their top choice, and N3 be the set of the agents that prefer am to a1. Let us
consider the preference profile u⃗ where members of N1 have utility 1{m for all the alternatives and members of N2 have utility
1 for their top choice and zero for the rest. For members of N3 we say that agent i P N3 he has equal utility over the alternatives
up to am, which means if he has am at position j in his ranking, he has utility 1{j over his first j preferred alternatives. We can
see that u⃗▷α σ⃗ and we have:

swpa1, u⃗q “
|N1|

m
“

n

m2
,



and

swpam, u⃗q “
|N3|Hm

m
“

nHm

2m
,

where Hm is the the mth harmonic number. We also have

distpa1, u⃗q ě
swpam, u⃗q

swpa1, u⃗q
ě

mHm

2

ñ distαpa1, σ⃗q ě
mHm

2
.

Now let us find an upper bound on distαpam, σ⃗q. Consider any utility profile u⃗▷α σ⃗. We have

swpam, u⃗q ě
np1 ´ αq

mp1 ´ αmq
,

and for any other alternative ai ‰ am we have

swpai, u⃗q ď
nHm

m

because the maximum utility an alternative can have in position j is 1{j. Therefore, we can see that

distpam, u⃗q ď

nHm

m
np1´αq

mp1´αmq

ď
Hmp1 ´ αmq

1 ´ α
,

and hence

distαpam, σ⃗q ď
Hmp1 ´ αmq

1 ´ α
.

We can then use Lemma 1 to conclude that

PoIIpπ⃗, αq ě

mHm

2
Hmp1´αmq

1´α

ě
mp1 ´ αq

2p1 ´ αmq
.

Lastly, because the POII is always greater than one, we have the desired bound.

Proof of Theorem 10
Theorem 10. For any α P r0, 1s, the strict α-distortion of every deterministic voting rule f satisfies:

distSαpfq “ Ω

ˆ

max

ˆ

m2α3,
m2

mα ` 1

˙˙

.

The bound achieves its weakest value of Ωpm
5
4 q at m “ Θp1{ 4

?
mq (see Figure 1).

Proof. Here we give two different bounds that complement each other.
First, assume that n is divisible by m ´ 1 and consider the preference profile σ⃗ where for each aj ‰ am, n

m´1 of the agents
have aj as their top choice and all the agents have am as their second choice. In addition, each agent is decisive between his
first and second choice and also his second and third choice, i.e., ’i“ pąą,ąą,ą, . . . ,ąq for all i P N .

Now consider any deterministic voting rule f . If fpσ⃗q “ am, consider the utility function in which all the agents have utility
1 for their top choice and 0 for the others. The distortion is unbounded in this case. Otherwise, if fpσ⃗q ‰ am, w.l.o.g. assume
that fpσ⃗q “ a1. Now consider the utility profile in which the agents who have a1 as their top choice have utility 1

pm´2qα2`α`1

for a1, utility α
pm´2qα2`α`1 for am, and utility α2

pm´2qα2`α`1 for the rest of the alternatives. Moreover, every other agent has
utility 1

1`α for his top choice, α
1`α for am, and 0 for the others. We can see that:

distpfpσ⃗q, u⃗q ě
swpam, u⃗q

swpa1, u⃗q

ě

α
pm´2qα2`α`1 ¨ 1

m´1 ` α
1`α ¨ m´2

m´1

1
pm´2qα2`α`1 ¨ 1

m´1

ě Ωpm2α3q.



For the second bound, assume that α ď 1
4
?
m

. Set t “ 12, and assume that m is big enough and n is divisible by s “ tm´1
t u.

Consider s sets A1, A2, . . . , As with t alternatives each, where Aj “ tapj´1qt`1, apj´1qt`2, . . . , ajtu, and a global ordering
πa “ pa1 ą a2 ą ¨ ¨ ¨ ą amq over the alternatives. In addition, partition the agents into s sets N1, N2, . . . , Ns of equal size.

Let us construct a preference profile σ⃗ where members of Nj have members of Aj as their top t choices ordered according
to πa, am as their t ` 1st choice, and rank the rest of the alternatives arbitrarily. Moreover, we have ’i“’ą for all the agents.

Now consider a voting rule f . There are two cases.
Case 1 (fpσ⃗q “ am): In this case consider the following utility profile: (note that here we try to maximize swpa1, u⃗q):

uipπipjqq “

$

’

’

’

&

’

’

’

%

αj´1
p1´αq

1´αm i P N1

αj´1

1´αt

1´α `αtpm´tq
i R N1 and j ă“ t

αt

1´αt

1´α `αtpm´tq
o.w.

This means that the utilities drops by a factor of α in each place up to the t` 1st choice for all the agents. Then for agents in
N1 utilities keep dropping to the end of the list but for other agents utilities remain the same after the t ` 1st choice.

In this case we have

swpam, u⃗q “
αtp1 ´ αq

1 ´ αm
¨
n

s
`

αt

1´αt

1´α ` αtpm ´ tq
¨
nps ´ 1q

s
,

and

swpa1, u⃗q “
p1 ´ αq

1 ´ αm
¨
n

s
`

αt

1´αt

1´α ` αtpm ´ tq
¨
nps ´ 1q

s
.

We know that αt ď 1
m3 , so in this case we can say:

distpam, u⃗q ě
swpa1, u⃗q

swpam, u⃗q

ě Ω

ˆ

α´t

p1 ´ αmqm

˙

ě Ω
`

m2
˘

.

Case 2 (fpσ⃗q ‰ am): Here w.l.o.g. assume that fpσ⃗q “ aj P A1, and consider the following utility profile: (note that here
we try to maximize swpam, u⃗q):

uipπipjqq “

$

’

’

&

’

’

%

1
m i P N1

1

t` 1´αm´t

1´α

i R N1 and j ă“ t

αj´t´1

t` 1´αm´t

1´α

o.w.

This means that members of N1 have the same utility for all the alternatives, and other agents have the same utility up to the
t ` 1st place and then their utility drops by a factor of α in each place.

In this case we have

swpam, u⃗q “
1

m
¨
n

s
`

1

t ` 1´αm´t

1´α

¨
nps ´ 1q

s
,

and

swpa1, u⃗q

“
1

m
¨
n

s
`

α ´ αm´t

p1 ´ αqpm ´ tq
´

t ` 1´αm´t´1

1´α

¯ ¨
nps ´ 1q

s
.

Again we use the fact that αt ď 1
m3 and t is a constant, and by some calculations we can see that

distpam, u⃗q ě
swpam, u⃗q

swpa1, u⃗q
ě Ω

ˆ

m2

mα ` 1

˙

.

With these two cases we can have the minimum of these two bounds as a lower bound on the distortion of any deterministic
voting rule with α ď 1

4
?
m

. This lower bound is Ω
´

m2

mα`1

¯

.



Proof of Theorem 11
Theorem 11. For every α P r0, 1s, every (randomized) voting rule f has strict α-distortion distSαpfq “ Ωp

?
mq.

Proof. Partition the agents into
?
m sets, N1, N2, . . . , N?

m, where members of Ni have ai as their top choice and rank the rest
of the alternatives in a cyclic order. Here we give two different bounds that complement each other.

First consider the case where all the agents report ’i“ pą, . . . ,ąq. Let x be the intensity oblivious optimal distribution and
a1 be the alternative with the minimum probability in x among the first

?
m alternatives. Think of the utility profile u⃗ where

agents that have a1 as their top choice have utility αj´1
p1´αq

1´αm for their jth choice, and other agents have utility 1{m for all the
alternatives. We have:

swpa1, u⃗q “
n

?
m

1 ´ α

1 ´ αm
`

np
?
m ´ 1q

?
m

1

m
ě

n

2
p

1 ´ α
?
mp1 ´ αmq

`
1

m
q.

Note that for α ď 1{2 we have 1´α
1´αm ě 1{2 and hence swpa1, u⃗q ě n

4
?
m

. On the other hand for ai ‰ a1 we have

swpai, u⃗q “
n

?
m

α ´ αm

mp1 ´ αmq
`

np
?
m ´ 1q

?
m

1

m
ď

n

m
.

We can see that

distpx, u⃗q ě
swpa1, u⃗q

1?
m
swpa1, u⃗q ` maxaiPAzta1u swpai, u⃗q

ě

n
4

?
m

1?
m

n
4

?
m

` n
m

“ Ω
`?

m
˘

.

So we have the desired bound for α ď 1{2.
For α ą 1{2 we consider the same π⃗ for the case that all the agents report ’i“ pąą,ą, . . . ,ąq.
Let x be the intensity oblivious optimal distribution and a1 be the alternative with the minimum probability in x among the

first
?
m alternatives. Think of the utility profile u⃗ where agents that have a1 as their top choice have utility 1 for a1 and zero for

the others, and other agents have utility 1{pmα´α`1q for their top choice and α{pmα´α`1q for the rest of the alternatives.
We have:

swpa1, u⃗q ě
n

?
m

and for ai ‰ a1 we have

swpai, u⃗q ď
n

?
m

1

mα ` 1 ´ α
`

nα

mα ` 1 ´ α
,

and since α ą 1{2

swpai, u⃗q ď
2n

m
?
m

`
2nα

m
.

We can see that

distpx, u⃗q ě
swpa1, u⃗q

1?
m
swpa1, u⃗q ` maxaiPAzta1u swpai, u⃗q

ě

n?
m

2n
m

?
m

` 2nα
m

ě
m

2α
?
m ` 1

“ Ω
`?

m
˘

. pα ą
1

2
q

So we have the bound for α ą 1
2 .



Proof of Theorem 12
Theorem 12. For every α P r0, 1s, the price of ignoring the intensities of deterministic rules with mandatory reporting of
α-decisive preferences is Ωp

mp1´αm
q

1´α q.

Proof. Consider the following preference profile π⃗ where each alternative except for am appears as the first choice of n{pm´1q

agents, and am appears as the second choice of all the agents. The intensity oblivious optimal cannot be am because it has
unbounded distortion in the worst case (we have shown that in previous proofs). All the agents report ’i“ pą,ąą, . . . ,ąąq.
W.l.o.g. assume that the deterministic intensity oblivious output is a1.

Consider the utility profile u⃗ where agents who rank a1 the first have utility αj´1
p1´αq

1´αm for their jth choice and other agents
have utility 1{2 for their top 2 choices and zero for the others.

We have

distαpa1, σ⃗q ě distpa1, u⃗q ě
swpam, u⃗q

swpa1, u⃗q
ě

n
2

np1´αq

mp1´αmq

ě
mp1 ´ αmq

4p1 ´ αq
. (6)

Now we will bound distαpam, σ⃗q. Consider any utility profile u⃗▷ασ⃗. If am is the optimal alternative we have distpam, u⃗q “ 1.
Now let a˚ ‰ am be the optimal alternative. For agent i P Na˚

we have uipa
˚q ď uipamq{α, and for agent i R Na˚

we have
uipa

˚q ď αuipamq. Let sw˚pam, u⃗q “
ř

iPNa˚ uipamq. We have

distpam, u⃗q “
swpa˚, u⃗q

swpam, u⃗q

ď
sw˚pam, u⃗q{α ` αpswpam, u⃗q ´ sw˚pam, u⃗qq

swpam, u⃗q

ď

n
p1`αqpm´1q

` αpswpam, u⃗q ´ n
p1`αqpm´1q

q

swpam, u⃗q
psince sw˚pam, u⃗q ď

nα

p1 ` αqpm ´ 1q
q

ď
np1 ´ αq

2mp1 ` αqswpam, u⃗q
` α

ď
np1 ´ αq

2mswpam, u⃗q
` α. (7)

Furthermore, since utility functions are strictly α-consistent with σ⃗, am gains at least αp1´αq

1´αm utility from each agent so we have

swpam, u⃗q ě
nαp1 ´ αq

1 ´ αm
.

Since Equation (7) is decreasing in terms of swpam, u⃗q we have

distpam, u⃗q ď
np1 ´ αq

2mnαp1´αq

1´αm

` α ď
1 ´ αm

mα
` α ď

1

mα
` 1.

Putting this together with Equation (6) and using Lemma 1, we have

PoIIpπ⃗, αq ě Ω

˜

min

˜

mp1 ´ αmq

1 ´ α
,

mp1´αm
q

1´α
1

mα ` 1

¸¸

.

Finally, note that our bound in Theorem 9 is Ωpmq for α ď 1{2, so we can can simplify this lower bound to

PoIIpπ⃗, αq ě Ω

ˆ

mp1 ´ αmq

1 ´ α

˙

.
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